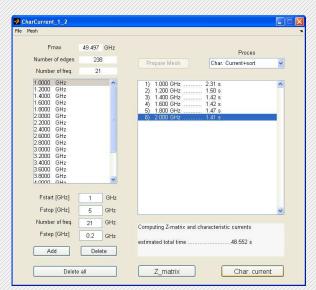


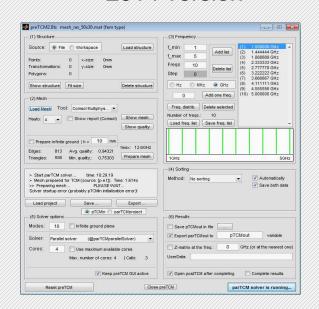
DEPARTMENT OF ELECTROMAGNETIC FIELD CZECH TECHNICAL UNIVERSITY IN PRAGUE CZECH REPUBLIC

Antenna Toolbox for Matlab (AToM)

M. Čapek¹, V. Adler¹, V. Losenický¹, M. Mašek¹, F. Kozák¹, P. Hazdra¹, P. Kadlec², V. Šeděnka², M. Marek², J. Rýmus³

¹ Czech Technical University in Prague, ² Brno University of Technology, ³ MECAS ESI s.r.o.


viktor.adler@antennatoolbox.com


History of the toolbox

- 2008: First software for Method of Moments + Characteristic Modes developed (master thesis of Pavel Hamouz)
- since 2009: Further work within the Ph.D. study of Miloslav Capek and Jan Eichler

2008 version

2014 version

Tools for Synthesis of Antennas and Sensors

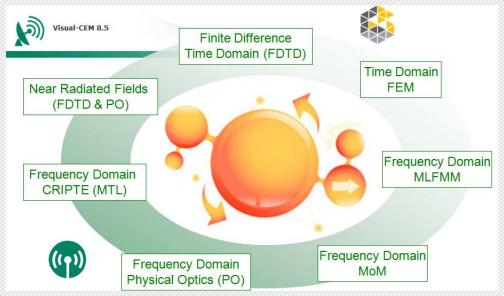
Project details

- supported by Technology Agency of the Czech Republic (TA ČR)
 - ALFA programme (applied research, experimental development, technologies)
 - time of development: 07/2014 12/2017
 - approx. 600 k€
- 3 participants
 - CTU in Prague and BUT AToM and FOPS (Matlab)
 - MECAS ESI s.r.o. Visual Antenna (CEM One)

Tools for Synthesis of Antennas and Sensors

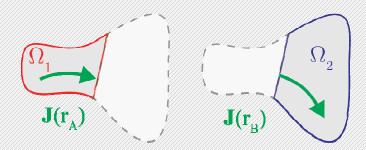
Project details

- project's staff
 - Miloslav Capek, Viktor Adler, Milos Mazanek, Pavel Hazdra, Petr Kadlec, Vladimir Sedenka, Zbynek Raida, Jaroslav Rymus


- students
 - Vit Losenicky, Michal Masek, Miroslav Cupal, Martin Marek, Martin Strambach

AToM → Visual Antenna

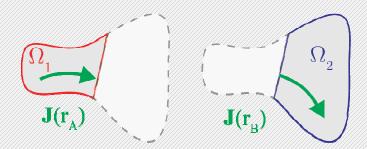
- The key functionality of the AToM will be implemented into Visual Antenna package, developed by MECAS ESI company.
- Visual Antenna is a module for CEM One, which integrates simulation tools for Computational Electromagnetics developer and distributed worldwide by ESI Group


Main features

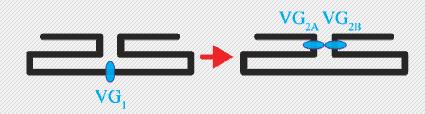
- method of moments for 3D planar and wire structures
- characteristic mode decomposition with robust tracking
- adaptive frequency sweep
- accept other codes from the community semiopen MATLAB architecture
- handle with data from third party software
- utilization of the source concept → antenna can be completely described by its geometry and current density

Main features

- method of moments for 3D planar and wire structures
- · characteristic mode decomposition with robust tracking
- adaptive frequency sweep
- accept other codes from the community semiopen MATLAB architecture
- handle with data from third party software
- utilization of the source concept → antenna can be completely described by its geometry and current density



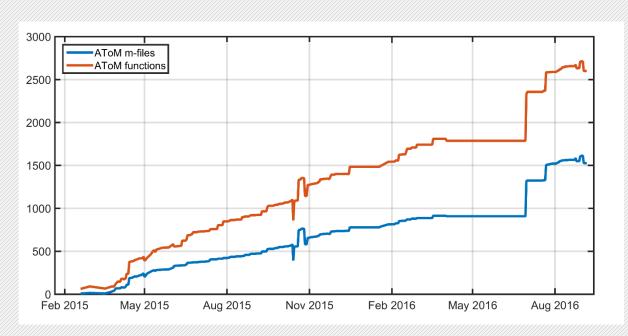
Structural decomposition



Main features

- method of moments for 3D planar and wire structures
- · characteristic mode decomposition with robust tracking
- adaptive frequency sweep
- accept other codes from the community semiopen MATLAB architecture
- handle with data from third party software
- utilization of the source concept → antenna can be completely described by its geometry and current density

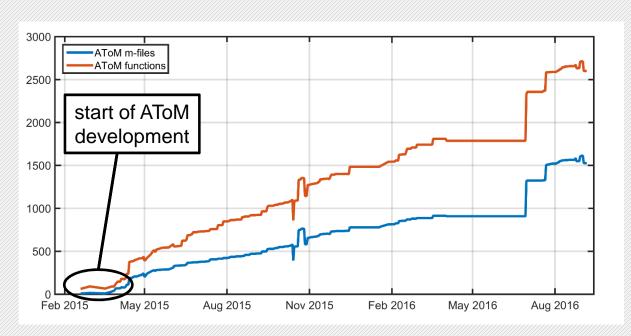
Structural decomposition



Feeding synthesis

Present state

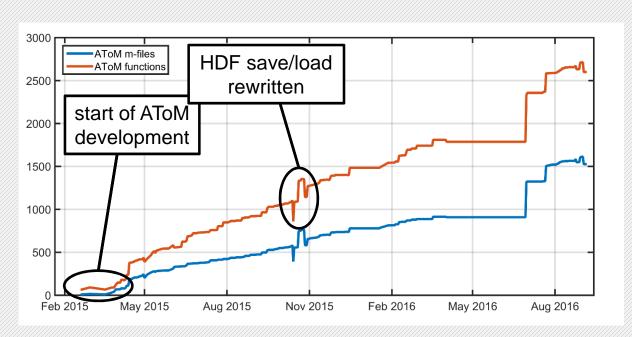
data analyzed daily at GIT server by Jenkins



classes	197
functions	2603
m-files	1540
unit tests	1224
lines of code	98106
comments	10235

Present state

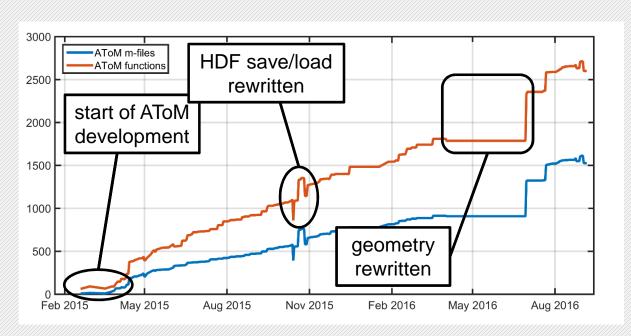
data analyzed daily at GIT server by Jenkins



classes	197
functions	2603
m-files	1540
unit tests	1224
lines of code	98106
comments	10235

Present state

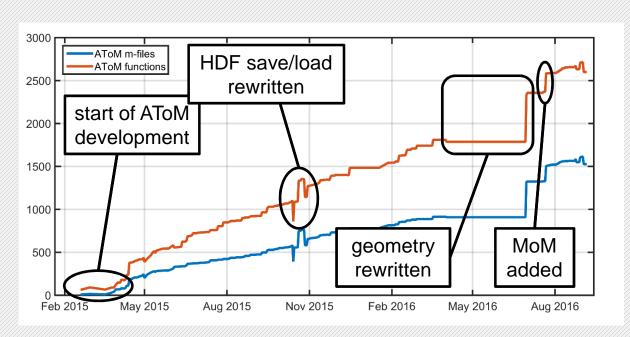
data analyzed daily at GIT server by Jenkins



classes	197
functions	2603
m-files	1540
unit tests	1224
lines of code	98106
comments	10235

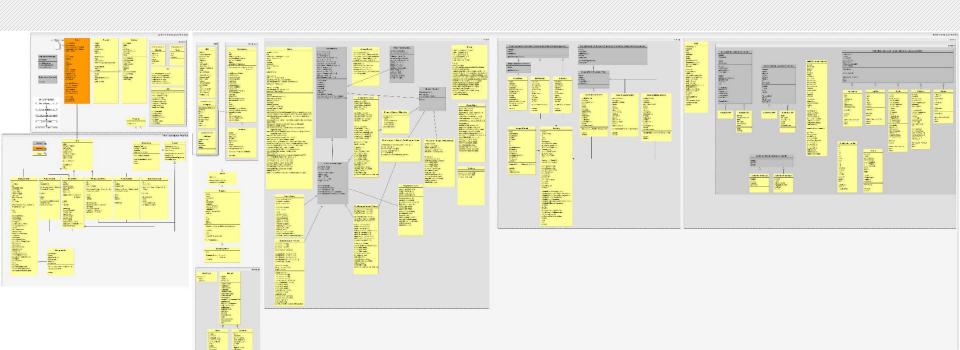
Present state

data analyzed daily at GIT server by Jenkins



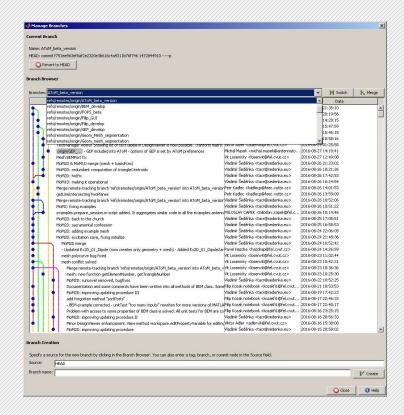
classes	197
functions	2603
m-files	1540
unit tests	1224
	·
lines of code	98106
comments	10235

Present state


data analyzed daily at GIT server by Jenkins

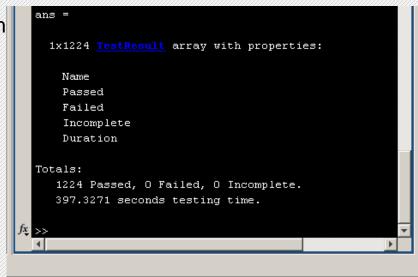
197
2603
1540
1224
98106
10235

UML scheme at 04/2016



Project infrastructure

- tending to agile development
- MECAS ESI s.r.o. server in Pilsen.
 - GIT version control system
 - web server (www.antennatoolbox.com)
 - email server (user@antennatoolbox.com)
 - ftp



Project infrastructure

- CTU server in Prague
 - Jenkins continuous integration system
 - Unit Test Framework
 - analyze whole code once a day
 - iceScrum (SCRUM)
 - results are saved to ftp
 - sending emails to sinners

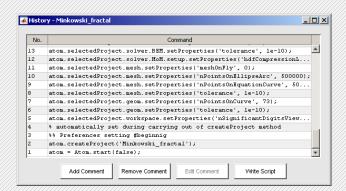
- Atom
 - singleton pattern utilized
 - management of projects
 - handling with preferences
- Project
 - contain references to all models
 - practically no functionality
- HDF
 - data storage
 - Hierarchical Data Format
 - suitable for recording and recovering computer data of electromagnetic simulations

Main classes

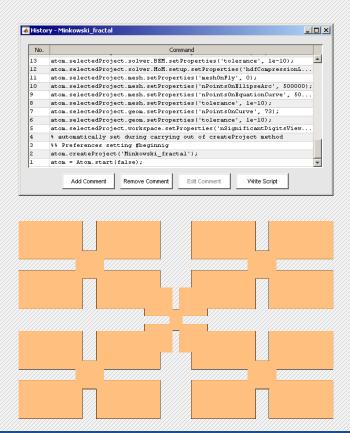
- Atom
 - singleton pattern utilized
 - management of projects
 - handling with preferences
- Project
 - contain references to all models
 - practically no functionality

- practically no functional

- HDF
 - data storage
 - Hierarchical Data Format
 - suitable for recording and recovering computer data of electromagnetic simulations

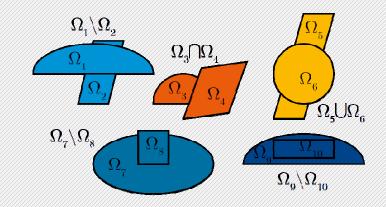

```
atom = Atom.start;
atom.createProject('myProject');
atom.selectedProject.save;
atom.closeProject('myProject');
atom.openProject('myProject');
atom.quit;
```


- History
 - all actions in AToM are captured
 - overloaded subsref of Project
 - actions can be evaluated as batch
- Workspace
 - using variables through AToM
 - arbitrary complex expressions
 - calling external functions from AToM
 - observer pattern utilized



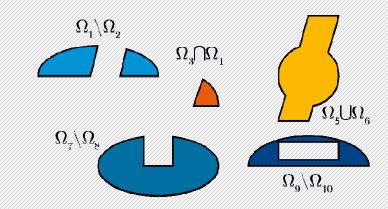
- History
 - all actions in AToM are captured
 - overloaded subsref of Project
 - actions can be evaluated as batch
- Workspace
 - using variables through AToM
 - arbitrary complex expressions
 - calling external functions from AToM
 - observer pattern utilized

- History
 - all actions in AToM are captured
 - overloaded subsref of Project
 - actions can be evaluated as batch
- Workspace
 - using variables through AToM
 - arbitrary complex expressions
 - calling external functions from AToM
 - observer pattern utilized



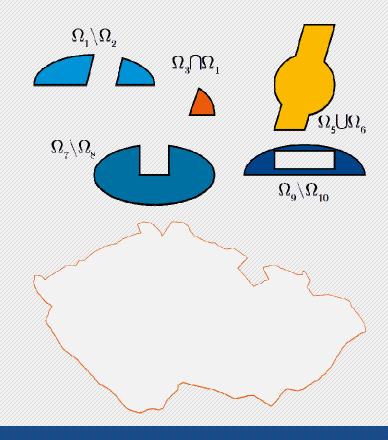
- Geom
 - definition of geometry primitives
 - transformations, boolean operations
 - parametrization of design

- Mesh
 - creation of deterministic mesh from geometry
 - using DistMesh P. O. Persson
 - fix points and fix edges


- Geom
 - definition of geometry primitives
 - transformations, boolean operations
 - parametrization of design

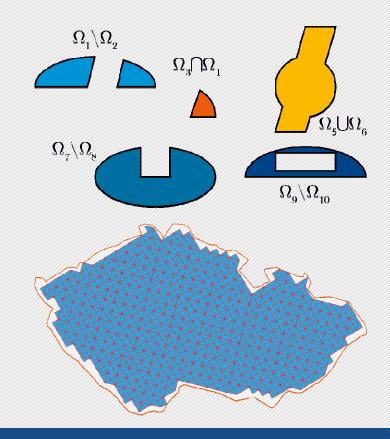
- Mesh
 - creation of deterministic mesh from geometry
 - using DistMesh P. O. Persson
 - fix points and fix edges

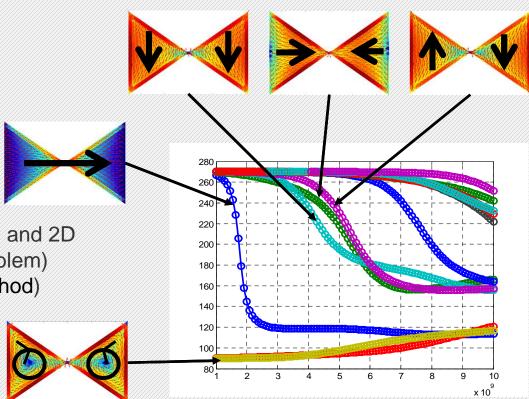
- Geom
 - definition of geometry primitives
 - transformations, boolean operations
 - parametrization of design



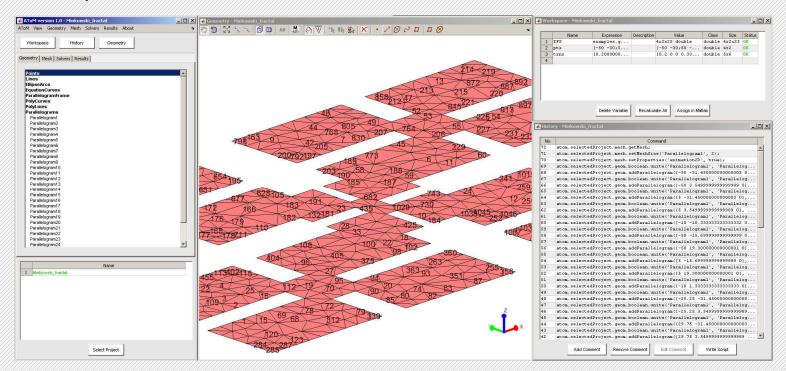
- Mesh
 - creation of deterministic mesh from geometry
 - using DistMesh P. O. Persson
 - fix points and fix edges

- Geom
 - definition of geometry primitives
 - transformations, boolean operations
 - · parametrization of design


- Mesh
 - creation of deterministic mesh from geometry
 - using DistMesh P. O. Persson
 - fix points and fix edges

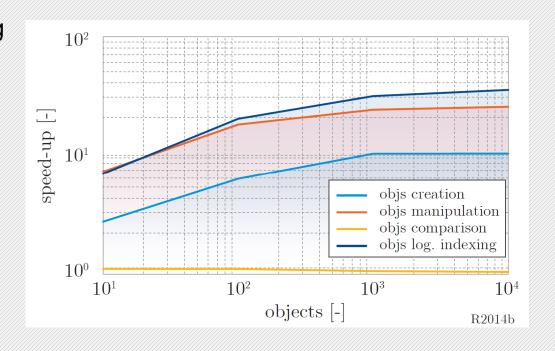

- Geom
 - definition of geometry primitives
 - transformations, boolean operations
 - · parametrization of design

- Mesh
 - creation of deterministic mesh from geometry
 - using DistMesh P. O. Persson
 - fix points and fix edges



- Physics
 - physical parameters of design
 - frequency list
 - feeding
 - symmetry planes
 - boundary conditions
- Solvers
 - MoM (Method of Moments) 1D and 2D
 - GEP (General Eigenvalue Problem)
 - BEM (Boundary Elements Method)

Observer pattern utilized


Utilized Matlab features

- Object-Oriented Programming
 - vectorized OOP
 - heterogeneous classes
- Unit Test Framework
 - Class-Based Unit Tests
- Source Control Integration
 - GIT
- Code Performance
 - profiling via profile
 - profile coverage

Utilized Matlab features

- Object-Oriented Programming
 - vectorized OOP
 - heterogeneous classes
- Unit Test Framework
 - Class-Based Unit Tests
- Source Control Integration
 - GIT
- Code Performance
 - profiling via profile
 - profile coverage

THANK YOU FOR YOUR ATTENTION

www.antennatoolbox.com info@antennatoolbox.com viktor.adler@antennatoolbox.com

SUPPORTED BY

